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On Generalized Dynamical Systems

\chosen nose,

M in 193% and 1936, A. Marcheud (3], [4] and 8. C. Zaremba
[8) generalized the notion of ordirary differential equations, consider-
m.twyoint x uemndann-epee, notonebuta.whohsetot
pouibh t%pnt ct:.cm c.letmng '} tuﬂy of trajectories.
rchtod to the oontrol dot:.ud, for mmph, by e dmountm _
oqutun x' = 2(x, £, u), vhere u dis aomtmlmurm&mu

Mil

less arbitrarily. The above ment:loned set of possible
tangent directi
“contingent equa.tion .

Dynamical syatems a8 a generalization of solutions of oniind'y

vas called "contingent”, and the corresponding eqmtion, :

differential equations are already & classical subject in the mthema'b:léal
literature, Its sys‘bem‘cic generalization to systems with no uniq& solutions
("generalized dmm.teal systens") was developed by Barbashin [1] and the
author [5], Rela.ted is a.lso the wor\; of Bushaw about poJ,ysystems [2l. -
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1. Introduction.
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be considered in. K"
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Already Marchaud and Zaremba proved that a contingent equation de-
fines & family of trajectories and, in that sense, defines & generalized
WQI system. The presént paper treats systematically the problem on
how a contingent equ‘ation defines a generalized dynamical system, giving
for example existence and uniqueness theorems, which were not given 5etore
because this subject was not considered from this point of view. .

The notation used in th.is paper is the following. |

The "state variables” x, y, ... will be points of the real

n-dimensional euclidean space X = R°, considered as vector space over the

reals; |k|[| will designate the usual norm.

The varfable ¢ R Will be called time, Curves x(t) Will usually

ki space, its points (x, t)e X X R.

The distance bLetween two points x, y¢ X is [x = y. The distance
betwesn & point x ¢ X and s set AC X 1is defined by '

oz, ) = plt, x) = at (b = als » ¢ Al
For two sets A, BC X, the"separation of A frm 3 1 defined by
p?(A, B) = swp (p(a; B)ﬁ_ ée AJe
The “aistance Vetween lA and B" is defined by - |

p(A, B) = p(B, A) = max (p*(A, B), p*(B, A)}.
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For coapact sets, this distance is always finite and defines the
Bausdorff metric. '

For r >0, the r-neighborhood of & set AC X s
vr(A)_ = {x e X; p(x, 4) <r). - |

The variable set C{a)C X, wvhere & belongs to some topological
space, is said to be: a) continuous at @, If for every 8 >0 there
18 some neighborhood of «, say V, such that for all ge V;: -

-

plc(a), Cla)) <8;

'b) upper semicontinuous at @, if similarly, forall ae V:

p*(c(a), o)) <o

2. Generalized dymamical systems,

"A usual dynamical system is given by a function
2

‘ F(xa, t, t) : XX R =X, vhich descrides the movement of a poinmt x(t)

from its initial position X =x(t ). This corresponds to physical systems

whose evolution is uniquely determined by its iritial conditions.

A generalized dynamical system (g.d.s.) , 18 similarly given by a func-

tion F(x, t, t) which toevery x, ¢ X, t € R, t Xt makes corres-"

pond a set F(x , t,, t) C X. This function F 4s called the “attainability

function®, because it represents states which are possible to reach from
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(x o? to) at ti.me' t. Therefore, generalized dynamical systems correspond

~to systems whose evolution is not uniquely determihed by the initial condi-

tion only, for example control systems where some control action determines
the evolution of the systen.

The basic axioms essumed for the function F(x, t, t) are the

- 1) F(xo, o t) 1s a closed non-empty subset of x, defined for every

IIm) _to Sty 5ty mpnes _

F(x, b *g’ - (‘v *1: "e)

x, ¢ r(xo, ., tl)

T IVv) Given x, €X; fo’ t,eR; & £t thereexists x, € x~.s\nh

that

v) r(x ) b, t) is continuwous in t: given X b, ty; bt Et, and
€ >0, there is a & >0 such that p(F(xo, t., t), F(xo, to tl)) <e
for all [t -t,] <& (being tZt). o =

vI) F(xo,' to, t) 4s upper semicontinuous in (xo, to), uniformly in any
finite interval t e ['bl, tal, t, St Sty: glven x, t, t), ¥, and
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€ >0, t;zere 13 a 5>0 .suchtha.t
p*(F(x3, t3, t), Flx,, ty, t)) <«
for all x"’, t;, t satisfying
ﬂit;_éx;[l<s, lto-t;;|<s,' t, 568ty

From these axiocms, tany proi:erhi_es follow wvhich are in a.gﬁeemetﬂ;
with vhat by mmtion should te expeéi;ed frod & g.d.s.

In particular, & trajectory of a god.é. 16 detined £6 be & curve
x & ¢(t) such thab for every b, £ t,, oft;) € f(qa(tl), 635 t5)s Imbude
tively this corresponds 6 the fash the.t p(ty) is réé.eiﬂ'bib $r6in !p(’cl)
b the eorredpoiding s,

§hs Pfolicwing faet can be proved for g.d4. systems! if
%5 € f(xl, 63 t3); there exists sewe trajestory P §(e) of he g.ds s., duch
that glty) =%, #(55) =5 (1.6 there d5 & $¥a Jectory golkig o X
to £ ii the correspondiig time interval)s

Another important Sansequencs 6f the axics 45 the Pact that the

attainability functian Flig £, ¥) caii be exvended bickiaids (for t <t o)
presérving almost all properties: ‘

Getierslized dynasical systems were ihtrciuced bty Parbashin (1], For
5ib6fs dnd iére details the Feades is referred +6 [5l. 1A Hiis last reference

the tacliaias extension 6f F is démoted by &; bt id tE presént peper
the safic 16tteF ¥ 15 Useds

e, .
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3. Contingent equations.
Definition 3.1. Given a curve x(t), the set of 811 y e X such

that there exists a sequence t, (1 =1,2,3, ...), &, =t, ¢ Ft,

i
x(t ) - x(t ) ‘
lim % =y 1is called the "cont:l.ngent" (or “contingent deriva-
v 1"
tive") of x(t) at the point x(t Yo It will be designated by Dlx(t)l »

or, in genera.l as Dix(t). =%
m : Just as the amalytical concept of derivative can be substituted

by the geometrical one of the te.néerrb 1ine, one can also visualize the con- -

tingent as a set of straight lines through one point (a " cone”) or two sets

of half lines (s forward and s backward cone). This approach was used in

e eaziter papers([2], [, [&). o |

.
'. o

An.expression -
G2 . o olx, t),

vhere the set C(x, t)( X depends on x and t, 4s called a contingent
equation. To solve it means to find all curves x(t) which satisfy (3.1);
such curves are called tzajectories or solutions of (3.1). e

In 1936 Zs.rem'ba. [ ﬂ’] proved the foJJ.owing theorem:

Theorem 3.1. If C(x, t)C X, defined in some closed neighborhood
V.ot (xo, t ), is compact, convex and -upper semicontimuous in (x, &)
there, then, at least one solution x =@(t) of (3.1) exists, passing through
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Remark 3.1. The hypothesis D*x(t) ( C(x, t) compact insures that

évery trajectory x(t) is locally lipschitzian and therefore, for example, -

mctiﬁa.‘ble. Trajectories are, therefore, relatively smooth curves. _
" As Wazewski pointed out [9], under the assumed hypothesis, the condi-
. tion ' . '

o(t) continuous _
{D‘v(t)c c(o(t), t) everyvhere

is equivalent to

! '- - - {o(t.) absolutely continucus,
B - o

#'(t) € Ca(t), )" almost everywnere.

Condition f.e.t, If, for every x ¢ X and every t e R, the set

C(x, t) 1s contained in a fixed compact set Cy:
(3.2) c(x, t)C c, C, compact,

then for every tza.Jectorj x=@(t) amd ), {;2 € R,

VRO EE I N
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&, Contingent equations for generalized dynamical sxstems'.

. Definition h.l. Given the g.d.s. r(xo, t, t) and a point

: (xo, to), the contingent of the g.d.s. at that point, designated by

D*F(x_, t,, t), is defined to be the union of the contingents (at that
point) of all the trajectories @(t) of the g.d.s., passing through

| (xo, to):.

(8.1) é- DeE(x, b, t) = U De®)] .

- el =xg t =t

Given & g+d.8., the sbove definition determines D*r(xo,-to, t) at

- each p’éa.ng"(xo, tg)e Inversely, the coutingent equation

XY

(s.2) | - D(x,; b, t) = Clxy, t) |

can be written, b(x, t) being a given (variable) subset of X; the pro-
blem now 18 the determination of the g.d.s. r(xo, o t) satisfying (%.2).

- of course, not for ey arbitrary C(x, $) 1t will be possible to finmd
Y solubion of (%.2), so that the question ar.lses to givve sufficient condi-
tionstoinsuretheeﬁ.stemeofasoltwion. ' ’

The contingent equation

~ (%e3) | . m(a(x,t) R -

for curves x(t), will be ulh# uloc:la:bed" to eqmtion (h.a).

]
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Ir C(x, t) satisfies the conditions of Theom.m 3.2, that 18 if

;. ©(x, ) 18 compact, couvex, wpper semicontinuous and satisfies condi-

tion f.e.t. (3.3), then the associated equation (4.3) defines a fomily of
tzs Jectories @(t). Vith the aid of these trajectories, & g.d.s.

r(xo,‘to, t) can be defined as seen in Theorem 3.2. '.I!his. g.d.s. sa.tisﬁes
.:..'fttxe';weforethere]ati.ox.z - _ o )

(%.k) o P(x, t, 8)C Clx, 4), -
because by definition of F(x ) t., t), every one of its trajectories

satisfies (%.3).

M. A very easy exauple shows that the above mentioned cone
 ditions are not suffictent to insure thé existence of & solution. Tt suffices
.%o taks, 1n (A.2) | | o
- c(xo, to)'-_o for xfo0,

q(o, to) = (unit m_i [ 51}.'_

Thus C(x, t) satisfies the above conditions, The corresponding g.d.s. 1s
r(xo, Yo, T) Bx,, end DF(x, t, t) =0, 8o that equation (}.2) is mot
satisfied at the origin x = 0. '

5. Existence theorem.
Iemme 5.1, . If C, C' are eunpact,.convex subsets of R‘,
p(C, C') 55 >0, p being the Hausdorff metric, if 8. desigrates the tall
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of radius r and eome fixed center x s=[x,l]x-xﬂ5r} and if
lr-z*| %58 8. NCFP, 8.nC g, thenthereis ¢ =¢ (3, r)>0
:mhthstlp(cnsr, c'nsr,)sc and ¢(3, r) +0 for r fixed amd
8 -0, '

Proof: The thesis means that?

1) xeC'NB , => there 18 y € CN S, such that Ix -yl se,

and - ' o

11) x€CNS8 => there 1s ye c'nsr,. such that nx vlse;

111) e(a)-.o with '3 =20 for fixed r. .
conut:.om (1) and (11) being symmetrical, it surﬁces to prove (1).

. hypothesis,

x ¢ 8, ncX 845 N T5(C)s

..Mretmtheieexist‘ucsr, veC, swhtmat lu-x]s8, [v-x]ss,
therefore fu-v] =25 and ves .. As CN8, # 0, there exists z€ CN S,

On.the segnent vz (v,ze C) there is some y such that ye Sr,
vﬂsr-l-ab) rz-e'(b). (Seerig. 1.) Then .

Iy-_xﬂsny vﬂ-l-llv xﬂ:e'(8)+6;e(b)..

(411) follovs from the expression of €(8) = 8 +Whrd + k&%, so tils

RS

e s e
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Corollary 5.1 If: 1) C=C(a)( X 1s a compact convex set
vhich is & continuous function of a variable q; 1i) also r = r(a) 1s a con-
tinuous "real positive function 111) c, = c(ao) > To= r(ao) and 1iv)
c(e) n 8(a) £ ¢ forall o belonging to soms neighborhood of o, tben,
ﬁ.venaw € >0, there is a neighborhood V of a, suwh that for every
aeV, p(cla) n 8r(a)? S N8 JL,‘,) se,

In other words,. C(a) N Br(a) is a continuous function of « at

Q.. ) _ .

. Proof: According to the lemma, there is s(e) >0 such that
(c(a), c(ao)) 8, |r(a) - r(a )l 58, implies p(c(ax) N sr(a)’

_. c(ao) ns (ao)) 56, m rest follows from the cm‘b:l.nuity of the functions

¢(a) amd r{(a).

Theorem 5.1. If the variable set ¢(x, t)C X 1is compact, convex,
continuwous in (x, t) and satisfies condition f.e.t. (3.3), then there 'ex:Lsts,

. a's.d;a. r(xo, t, t) satisfying equation (%.2).

Proof: Defining r(xo, 0. t) as in Theorem 3.2 by the trajectories
or the associated equation (4.3), the relation (4.14) shows that only
D*F(x,, t, t) )c(xo, t ) remains to be proved. In other words, given any
Y, € c(xo, to), a trajectory @(t) satisfying (4.3) bas to be shown, for

vidch @(t,) =x, and y, ¢ Dip(t)]

O s i i i
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Actually, o(t) satisfying (4.3) will be constructed so that

o(t,) =x, and

2 - prg(t) - ¥,
t= to

BEaving fixed X to, Yo define

T(r) = sw {o(y,, Clx, £)); Ik -x0sx lt-t|sn)

forall r 20. Then y(r) is continuous, non-negative and y(0) = O.

-

i h(x, t). = max (ﬂx - xoll, It, - tol)a

C*(x, t) = By (y(7,) = (33 Iy - yoll 5 2r(w))e
It follows t;at.
| Crx, 6) = Clx, £) N C(x, t) £ 4.

Here Corollary 5.1 may be applied with e = (x, t), r(a) = 2r(n(x, t)),
C(a) = ¢(x, t) as continuous functions of (x, i). Therefare C*(x, t)
is contimuous and satisfies all the conditions of Theorem 3.1 therefore for
some tzajectory (t)s B |

T A o T o el
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1) pe(t) C ox(x, t) C c(x, t).
11) tp(to) R '
. 143) n-v(t)' o C*(x,, t5) = (3,)-

This proves the theorenm,

 Bemark 5.). If the conlition f.e.t. is not satisfled bub all the
other conditions of '.L'beofem 5.1 hold, the result is still valid if the
_existence of the g.d.s. F 18 wderstood 1n a local sense, In order to
give an exa.ct meaning to this s:ta.tement, one can, .:tor example, change the
given C(x, t) outside a certain compact GC x XR, in ;uch a vay that
the new C(x, t). 'sa.tufﬁes condition f.e.t., and consider the so defined
8e.4.8, cnhin G.

' Bemrk 5.2. From the symetry of the assuptions with respect to a
change of sign of t, 1t follows tiat P(x,, b, t) 1s also compact for

ell t <ty a fact which is mot alvays true for the most general g.d.s.

(see [51). | "

Remark 5.3. From the proof of Theorem 5.1 follows that, under the
assunptions made there, 1f y € c(x,, to), there is a trajectory x(t)
of the associated equation (4.3), such that the derivative x'(t) exists

“
= L -
a.tl t _to and x*'(t ) ya._
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6. Another définition of contingent of a_i..d.s.

By similarity with definition 3.1, cné can define a kind of_ genera-
14zed conungeqt'ct the g.d.s. Flx, t, t) et the point (x,, t;). To
avoid confusion with the contingent defined by definition 4.1, the notation
D'F(x,, t,, t) Wil be used here. | |

Definition 6.1. The set of all Y € X such that there exist sequences

b, x, (1= 1,2,3, S ;!tO: tyot, x € F(xo, t, ty) ant

xi -xo

Tt -z =Y will be called general contingent of the g.d.s. F at the
o :

lim
b =Y )

j potnt (x, t)) and designated by D'F(x,, t-o,.t).

Note:  In this definition, also values ¢ <t° are to be considered
in the expression r(xo, to, t),‘ vhich is then the backwards extension of
the ariginal P defined for t & t.. '

Remaxk 6.1. According to definiticns 3.1 and 4.1, the contingent
D¥P(x , t, t) 1s obtained from D'F(x_, t,, t) restricting, in definition
4 to lie all on the same'tmjectory:‘ x, = :p(ti). There-
fore 4 '

D*R(x , t,, t)C D'F(x , t, t).

Under tie assumpiions of Theorem 5.1, it will be shown that ~D¥F = D'F,

Abub first some auxiliary lemmas vill be stated.

Lemma 6,3, XIf c( X is compact and convex, a <b, the vector func-
’ L
tion x(t) 1s sbsolutely contimuous in [a, b] amd $X e ¢ for alnost

every te [a, d], then

e DT o D R e i T Y PR
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x!t) -x{a.[ € C

bPe-a *

The proof can be found in [8] or [B]. |

lemma 6.2. If in a campact domein G( X x R, and for the g.d.s.

¥, " the set D*l?(xo, t, t) = c(xo, to) is compact, convex and continuous,

then there is a comstant k such that for every trajectory e(t) in G

botey) =0t 5 x - ey - .

The proof follows from the fact that o(t) 1s absolutely continuous
(:emrk 3.1) a.nd. almost everywhere

H s ow (lylls ¥ ¢ Clp(t), +)) & x;
k may be talnen :I.ndspend.ent of (9(t), t) because of the continuity of

c(x, t) in. G.

The inequality may also be written

l(@( ): 2) - (v(tl)) 1)" s H tll
with X =Xk + 1,
lemma 6.3. Under the assumptions of Iemm'6.2, given € >0. there
is & 3 > 0 such that as long as all points considered belong to G,

-
]tl-t|<5 implies :i*t ev(c(x,t)) for all x, eF(x, or B1)e
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Bere V_ (C) designates the closed e-neighborhood of the set C.

Proofs By continuity of C(x, t) in the compact set G, given

e g ey,

€ >0 there 1s & >0 suwh that [(x, ¢) - (xgs tg)] <8, 1mplies
p(c(x, t), Clx, t))) <¢ uniformly in G, or '

6D ok, 9C ek, ).

By lemma 6.2, there is 8 >0 such that

(62) e -] <5 tmpies [(o(t), £) - (@(5)), t ) <8

. for every trajectory o(t) in G. , |
. Given any trejectory @(t), by remark 3.1 it is absolutely comtimuous
. and, by (6.2) and (6.1) o '

£ « 2u9(6) C D(a(2), ¢, ¥) = clole), +)C T (elx,y t,))

almost everywhere in the interval |t - t| <.
'.:héretom, ir Itl - tol <38, lemma 6.1 my be applied and
@(t,) - o(t)

L (63)
A ) 5o,

€ (el t))-

Bow, if ‘x; € F(x, t, t,), there is & trajectory q»(t)"';such that
@(t,) =x, 9(t,) =x,. Applying (6.3), the lemma is proved.

.- L AR g
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An immediate result is the following.

Theorem 6.1. Given a g.d.s. F, if D*F(x , t, t) = c(‘xo, t,)

u'conpact, convex and continuous, then D'F = D¥F,

X -nx
i
Indeed, any possible limit of i =%, (xle F(x,- t, t)) 'belongs
to fe(c(xo, t,)) for every ¢ >0; themfone D'?( ¢ = D¥p,

Iémma 6.h4.  If the g.d.s. F satisfies the cantingent equation
{(6.4) _ . .D'P =¢(x, t),

vhere C(x, t) 1s compect, convex and continuous, a.nd. :l.f for the constants

X.
-(xo,to)exxn, 6% 1 >0 >0, €0, a>o, ﬂyn-a.-c-ras—l-
I,

_and a1l (x, t) belongi.ngtotham

‘B‘-((x.t);llx ll‘r g tl‘r
the relation |
P(yos c(x, t)) <e
holds, then for every t such that ]to-f,lSrz,

Fx,t,t) -x
o’ ‘o’ 0. .
.. ely, %ot }) <e. . -

Proofs Assume £°<1:* sto»-l-rz; 1tvﬂ1bemved:thatfo;any
1>0, there 18a x*¢ F(x, t, t*) such that

RESARRFRE - = Ry 4
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) -x
(6.5) Fﬁg - yoll <c+q.
(+]

. This will the ;
prove lemma for t* >t; mrt*<% the same proof applies,
making some obvious changes.
By hypothesis, p(y,, C(x,, t,)) <€, so tiat there is some
¥y € c(xo, to) such that ﬂyl - yoﬂ <€ As 7y, ¢ D*r(xo, o t), - there

18 (x,, t,) such that t, <t = t*,’ x; € F(x, to"‘f'l) and

' 1= % '
Fl'to -y]_" <

= =~V [l <n+te¢
t, o ’

CM'

e

I, - X, =¥ty =t )l < (n.+ €)(t, -t)..

It may be assumed that 3 <8 and therefore .

u";l. -xon <'(!lv°ll +q+ e)(tl --go) <=z,

so that (xl, tl).s 8. o _—
Ir %, < t¥%, . there is similarly (x,, t,) .such tmat t) < t, s t*
and

n"a-xl - ¥ (ty = tl)]l < (q.+ e)(tg - ).
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A sequence to <tl<'c2 < oeo <1‘.n is constructed in this way, and

by = x5 = %ol -t)n- |

-t

u"n *pd ¥ Xpg - xn-a"""""tl."x '7o(t -l

"’h = Xpa tn-l)u+ i *"xl =X

o""__yo(tl' = to)u <

* .1._\. + t?)]l .s
- Yolt, -
e (-t

. Dividing By (t, - t;) >0, -

~—2-yfl<a+e
a to °

'If, at any step,

the sequence can bs continued, and if tn-»t* for n-e

t, = %%, relation.(6.5) is proved.

4

I tn<t*

then by continﬁity

~of P{x, t,t) in t, the existence of x* satisfying (6.5) 1s insured.

If there is an upper dmit to such that the sequence ¢ a cannot be extended

ferther then t, but t, —»t for n e, then by contimuity egain there.
isa x satisfylng (6.5) and from (xm, t,) the sequence can be extended
" far more, contrary to the assumption; therefore +i* can be indefinitely. ;:
. approached. This proves the leama. ' e
Remark 6.2. If the g.d.s. F sa.tisﬁes eqution (6.4) with c(x, t)
compact, convex and qozrtinmus, andif Y, € e(xo, t ), then for any € > 0 )

there 18 8 >0 such that for [t - t|<8,

.

- . ——
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therefore (6.6) holds unifommly in G.

21~

r(x 9 t F) t) -X
o(y, (—Ig=r—)) <e.
(-]

Indeed, C(x, t) being continuous, there is some neighborhood of
(x,, t,) of the type of the set S in Iemma 6.k, where the assumptions

of that lemma are satis‘ﬁgd.

Remark 6.3. The result of the preceding remark can be formulateds:

for |t -1t | <8,
»  PF(x, t,t) -x :
(6.6) pr(elx,, 1), { —2—o ) <o

This 18 obvicus, except perhaps for the fact that being C(x, t,)

. , r
bounded, the set 8 can be chosen so that the relation ﬂy°ﬂ<-i_-!'- of ’
: i<z,

* Lemma 6.4 1s eatisfied for all y,_ € C(x,, t ).

Remark 6.&. Under the assumptions of Igma. 6.4, C(x, t) 1s uni-

formly continuous and unifornly bounded in every cmpﬁ..ét set 6C xx R,

-~

Combining Lemmas 6.3 and 6.4, the following result is obtained.

Theorem 6.2. If C(x, t) 1is compact, convex and continuous in the

compact domain GC X X R, then T

» P, t,t) =x
plelx,, t,), [ —Z—5=——9)) 40
-

for t-oto uniformly in G.
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.7. Uniqueness.
Given a contingent equation (%.2) satisfying the conditions of

Theorem 5.1, it is still possible that the solution is not unique. In
other words, given C(x, t) it is possible that there exist two essen-
tially different g.d.s., F, snd F,, such that at every point (xo; to):

n*rl(xo, tg, t) = D*Fz(xo, t, t) = c(xo, t")'

Example 7.1. Iet X =R. The curves x = @(t) = (t + <:<:u'.\s‘l'.)3 de-
fine the g.d.s. '

Fylxy o t) = (6 + I - t_)°) (tbe set of ome potut)

(see £ig. 2). Obviously it satisfies all exioms of & g.d.s.
" A11 solution curves of the differential equaticn

(X T - b | 52/

also definés & g.d.s. F,, vhich is different from F) because, for
example, for t >0, | | '

F,(0, 0, t) = [q, 1_;31

1s tle set of all x, 0sxst’ (fig. 3).
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On the other hand, satisfies the same differential equation

R
(7.1) vhich is a special case of a contingent equation.

Definition 7.1l. Given the contingent equation D¥F = C(x, t)
satisfying the conditions of Theorem 5.1, the g.d.s. ¥ defined by the

trajectories . @(t) of the associated equation D*@( C(p, t), as:

x € F(xo, t, t) if and only if there is a trajectory
{w(’c) such that @(t ) =x_, @(t;) =x;

vill be called maximal solution of the contingent equation F_ .

This deponinaticn is jJustified, because 1f F)(x, t,, t) satisfies

D*P, = C(x, t), and x, € Fi(x, t, t;), there 1s a trajectory of this
g.d.8, Q(t), going froam ¢(t°) =x, to Q(‘bl) = x,. But then

g D¥F, = C(x, t), so that ¢ satisfies the associated equation and
x, € rm(xO,. t, t). Therefore ?ic L i N

Thearem 7.1, If the varisble set C(x, t), defined in XX R is

-compae:b, convex, contimious, satisfies condition f.e.t. (3.3) and satisfies

' also the following condition? (*)

(-3 elelay ), Ol ©) = Wk, - xyl, ¢)

vhere w(z, t) is defined for z = 0 and is non-negative, continmous,
bourded and incressing with z and such that

(*) A similar conditioh was used by Turowicz in [7) and [8]. "

S L

T ————
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(T:4) g mvle 0 2(0) =0

bas the unique solution z(t) = 0, then the solution of the contingsnt
equation

(1.5) D = Ox,, t,)

exists and is unique.

Proof: The existence has already been proved in Theorem 5.1. To
Prove uniqueness assune that two different g.d.s. Pl(xo, to, t) and
ra(xo, to t) satisfy (7.4). It vill be shown that for every t >t,,

@) ey, b B Tylx, b, 8) =o.

Inﬁe.rc'hsnging F, asd F,, p(F,, F,) = 0 follows, and being clpsed.sets,
F) = F,. Cianging the sign of t, the proaf is still valid and the general
result follovs. ' o |
In oxrder to prove (7.5), it may be assumed that (xo, to) is fixed
and all points (x, t) considered lie in some compact region 'GC X X R;
the erbitrariness of (x , t,) and G mekes the result general. |
Desigating . ~ | e

z(t) = *(Fy (x,, Ty, t), Folx, t,, t)),

L i os
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z(t) is lipschitzian by Lemms 6.2 or 6.3, and therefore absolutely contin-
uous. Aho z(0) = 0,

!o obtain & bound for the derivative z' = I— at some mtant tl
‘the :ollowing construction will be made (see fig. 4).
Assuning

z( . > 0,
there 1s x; € Pl(x

tO’ tl)’ yl =

-

(X to tl)'smh.that

’1 - P*(r1(x°: to) tl)" Fé(1°: toa tl)) =

= plxy, Tlxy to 1)) = by - 7yl

.--‘

Now, asswe ¢ >0 given arbitrarily and take & >0 such that

| Zfor lta -] <8,

- A ( ’ %9 ) -
(r.6) p(c(xy, ), L 2 tl_ 1-.: }) <e¢

uniformly in . G (Theorem 6.2), for both g.d.s. P ‘and Fp.- Then, for

such that |t, - <%, z, =zt )>0 myalsobeassunedby
2 - b R 2

eontinuity, and there are points

Xy R, b, ), vy e Rylx, t, ty)
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'P*( xoa o’ 2): 2(x°: 2))
= plxy 2( o t2)) = Iy - moll.

Teke any trejectory Ql(t) of F, through tpl(to) =x, and '
ql( ) = = X,. Calling cpl(tl) = x], obviously x{ € l(xo, t, tl).
Thexe 18 a point yl (xo, t, l) such that

P(xla 2( 1)) = nxl - ylﬂ

Choose a traJectory <p2(t) of F, through q>2(tl) = yl such that,
'eu-unz o(t,) = ¥3, e Fp(x, ty, t,) and

»

E:%':: xl ‘"(ﬂ!l-rlna 1)"'a°

This can be done because, by assumption (7.3)
p(c(xi, tl)’ c(yi} tl)) 3 V(uxi - Yiu; tl)
ang. by lemma 6.3 and candition (7.6)

B e e, ),

Y2 "1

Y=ty

7 (c(yl: 1))

£t

-0y gy yoar

N DY e




Now,
5=l -7l 2 Iy - 53, .
5 = I - voll 5 Ix, - 330
ﬂ!nereforé
2= % 5 b - w3l - - 33l
Shy -3 -xy+yl
= l(x; - x}) - (v3 - yDI.

 Rch _Pe-x B-yl
Tt 2 =% "2"‘1

' "(ll!l 71“: tl) +2¢ ‘"(kl 71l) tl) + 2

.-'(’1) 1)"'&

" 18 obtained. Making nov t, +t,, € being arbitrary

=  wlsley), ).

."tl

‘ﬁ

Therefore z(t) is ma jorized ‘by the solution of (7.3;), 80 that z(t) =0
and the theorem 1s proved. ’
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